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ABSTRACT

Short-term rentals of shared mobility devices (SMDs) including bikes,

e-bikes, and e-scooters are gaining signi�cant popularity across

di�erent countries. These services equip their SMDs with GPS re-

ceivers which allows the riders the �exibility to park their SMDs

anywhere, and the next user simply �nds the nearest parked SMDs.

However, GPS accuracy decreases signi�cantly in urban areas and

causes real-world problems (e.g., users and chargers not being able

to locate the SMDs). To overcome this problem, we propose Ramp-

Scope that utilizes physical characteristics of ramps on the sidewalks

– which are prevalent in urban areas – to correct for GPS error. As

the user rides over a sidewalk ramp, the SMD equipped with a gyro-

scope captures the motion signal to uniquely identify the ramp and

localizes the SMD to the nearest driven ramp. As a proof-of-concept,

we present a preliminary evaluation of RampScope with real-world

experiments by driving three di�erent SMD types over 800 m to

demonstrate an average ramp prediction accuracy of 98.1%.

CCS CONCEPTS

• Information systems→Global positioning systems; •Human-

centered computing → Ubiquitous and mobile computing
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Figure 1: Figure depicts an SMD parking scenario, comparing

(a) the noisy GPS and (b) RampScope. (a) GPS mislocates the

SMD to the opposite sidewalk, i.e., in the geofenced area,

hence preventing the rider from parking. (b) RampScope

leverages gyroscope signals from the SMD traversing over

sidewalk ramps to identify the correct sidewalk and the near-

est driven ramp, thereby enabling successful parking of the

SMD.

1 INTRODUCTION

Short-term rentals of shared mobility devices (SMDs) including bikes,

e-bikes, and e-scooters– also known as shared mobility services –

are gaining signi�cant popularity, and their market is projected to

increase to $500 billion by 2030 [9]. This is because they facilitate

a convenient, low-cost, and environment-friendly solution for the

�rst/last-mile commute compared to taxis or other ride-sharing

services [3].

To further maximize user convenience, many of the shared mo-

bility companies employ a dockless system, where the users are

free to park the SMDs at any public locations. To accommodate

the dockless system, however, the companies equip each of their

vehicles with GPS receivers for accurate localization. This is so

that the next user or their chargers can �nd the parked SMDs in

their vicinity, utilizing the companies’ smartphone applications.

Furthermore, many companies implement geofencing to notify and

prevent their users from parking or driving in restricted areas [17].
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Unfortunately, GPS su�ers from urban canyon e�ect, where high-

rise buildings block line-of-sight paths from the satellites to the GPS

receivers as well as causing multi-path e�ects that result in local-

ization errors up to about two hundred meters [2, 10]. This causes

critical problems for the shared mobility services. As the SMDs

are frequently ridden and parked on the bike lanes on sidewalks,

the noisy GPS readings often incorrectly localize them to opposite

sidewalks of a road or even to adjacent roads. This is reported to

cause signi�cant confusion to the users and chargers trying to �nd

the SMDs. Furthermore, the users may be misguided to park or

drive into the geofenced locations (as depicted in Figure 1(a)), lead-

ing to numerous illegal parking problems for municipalities and

ultimately signi�cant monetary loss for shared mobility services

(§2.1).

While solutions exist to remedy GPS errors, none of them suf-

�ciently resolve the problem. For example, map-matching, which

snaps noisy GPS coordinates to the most likely point on the road,

is still error prone, especially in dense urban areas where the side-

walks are compactly co-located [19].

To overcome the aforementioned problems, we ask the follow-

ing question – can we suggest an e�cient solution that can help the

shared mobility services to more accurately localize their SMDs? To

answer this question, we propose RampScope that utilizes physical

characteristics of sidewalk ramps that can augment the noisy GPS

readings, to ultimately localize the SMDs more accurately. Speci�-

cally, we make use of an observation that the di�erent ramps on

a sidewalk yield relatively unique signatures that can be captured

by the gyroscopes equipped on the SMDs. Given the prevalence

of these ramps, RampScope proposes a ramp-level localization,

namely accurately localizing the SMDs to the nearest driven ramp

of the correct sidewalk. Figure 1(b) depicts the exemplary scenario.

As the user rides over a ramp, the captured gyroscope signal pin-

points the exact ramp location, and resets the corresponding GPS

error.

Designing RampScope, however, comes with di�cult challenges.

First, it is extremely di�cult to obtain a representative but unique

signature of each ramp from the gyroscope data collected from

di�erent SMD types – i.e., bikes, e-bikes, and e-scooters– with vary-

ing drivers and driving speeds. To solve this challenge, RampScope

employs a Bootstrapping phase that collects multiple ramp signals

and utilizes Dynamic Time-Warping Barycenter Averaging (DBA)

to preserve the underlying characteristics of the ramp signals. Sec-

ond, given many sources of noise from the ramp signals alone

(e.g., di�erent driving speed, pattern, and entrance/exit points on

ramps), the prediction may not always be accurate. We correct the

possible prediction errors by utilizing the phenomenon that the

ramps are geographically positioned in a distinctive manner on

each sidewalks.

To demonstrate the feasibility of RampScope, we present a prelim-

inary evaluation with a total of three di�erent SMD types, namely

bike, e-bike, and e-scooter, driven across an 800 m route, consisting

of eight di�erent ramps (with a total of 24 ramps in the vicinity

of the route) and obtain an average ramp prediction accuracy of

98.1%.

2 BACKGROUND

We present the relevant background and a feasibility study.

2.1 Real-World Problems

We present real-world problems of noisy GPS on shared mobility

services. First, GPS inaccuracies can misguide the users riding the

SMDs to enter geofenced areas. These services enforce geofencing

to prevent parking as well as driving in certain geofenced areas (due

to government mandates as well as unserviced areas instigated by

the mobility companies). Figure 1(a) illustrates the scenario where

the SMD is incorrectly localized to a geofenced area, hence incor-

rectly prohibiting the user from parking the SMD. In addition to the

parking scenario, misidentifying geofenced areas may signi�cantly

degrade usability while riding the SMDs. If the SMD is incorrectly

localized to a geofenced (i.e., unserviced) area, many services auto-

matically reduce the SMD speed or even stop its operation while the

user is riding it [17, 22]. Both scenarios degrade the user experience

leading to potential monetary loss for the shared mobility services.

Second, the GPS errors increase the time taken by next users or

chargers [12] in locating parked SMDs. In particular, the app may

incorrectly pinpoint the location of SMDs on the other side of the

sidewalk or in the middle of the roadway, causing increased user

confusion and frustration. Additionally, such errors may also lead

to monetary losses for users who reserve SMDs ahead of time, as

they may have to pay extra charges while searching the incorrectly

located SMD [4]. To address such problems, RampScope proposes to

utilize the uniqueness of ramps to improve the localization accuracy

to the nearest driven ramp.

2.2 Utilizing Ramps for Localization.

Prevalence of Ramps. We refer to a ramp as a road element that

consists of a downward slope, a �at road, and an upward slope,

while occasionally including other components such as curbs and

gutters (Figure 2(a)). Ramps facilitate a safe transition between

a sidewalk and a roadway, and are prevalent on sidewalks (e.g.,

building/parking entrances, crosswalks, intersections; see ramp

images depicted in Figure 2(b)). To provide an intuition of the

prevalence of ramps, we randomly calculate the average number

of ramps in densely populated cities to be about 23 ramps within a

kilometer segment – i.e., observing a ramp in every 40 meters on a

sidewalk1.

Ramp-level Localization. RampScope utilizes the prevalence of

ramps to provide ramp-level localization. RampScope localizes the

SMD to the nearest driven ramp and bounds the errors to a single

(and correct) sidewalk. As depicted in Figure 1(a), the GPS readings

may erratically vary in two dimensions, namely along the width

and length of the road, hence mislocating the SMD to the geofenced

sidewalk. Contrarily, RampScope successfully identi�es the ramps

ridden by the user (Figure 1(b)), and correspondingly locates the

SMD to the nearest ramp on the correct sidewalk.

1Given the lack of existing documents, we randomly pick one-kilometer segments
of sidewalks from three densely populated cities, namely San Francisco, Seoul, and
Singapore, and count the number of ramps in the segments from Google Maps to be
29, 21, and 20, respectively.
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Figure 2: Figure depicts (a) components of the ramp that

causes signi�cant variations along with entry and exit points

and (b) the uniqueness of gyroscope readings, where signals

from the same ramp are alike while being distinct across two

ramps.

2.3 Feasibility Study

To demonstrate RampScope’s feasibility, we perform a set of experi-

ments on two types of ramps, namely a crosswalk and a sidewalk

entrance as depicted in Figure 2(b). We observe the uniqueness of

ramp signals (captured by the equipped gyroscope), having signi�-

cant variations generated around the entry and exit points of the

ramp. The ramp signals of two drivers riding over the same ramp

are similar while being distinct across the two ramps. We attribute

this phenomenon to the di�erences in ramp components including

the angles, lengths, and heights of slopes, curbs, and gutters [14].

These components induce minute angular di�erences that are most

e�ciently captured by a gyroscope. We note that accelerometers

counterintuitively incur more noise in RampScope’s use cases as

they are more responsive to lateral movements.

3 SYSTEM DESIGN

RampScope leverages the uniqueness of ramp signals captured from

a gyroscope sensor to augment the noisy GPS readings in order to

achieve ramp-level localization of shared mobility devices (SMDs).

Figure 3 depicts the overview of RampScope’s design, which con-

sists of two phases, namely – Bootstrapping and Localization phases.

Bootstrapping phase (§3.1) utilizes gyroscope data from multiple

traversals of each ramp, to learn the representative ramp signa-

ture. Localization phase (§3.2) takes as input – gyroscope and GPS

data from an SMD traversing an unknown route, as well as ramp

signatures (from Bootstrapping phase), to output the ramp-level

localization (i.e., nearest driven ramp).

3.1 Bootstrapping Phase

Bootstrapping phase takes as input gyroscope signals from SMDs

to compute ramp signatures for all ramps of interest along with the

known ramp lat-lon coordinates. On a high level, the Pre-processing

module (§3.1.1) performs noise-removal and extracts ramp signals

corresponding to the individual ramps. Subsequently, the Ramp

Signature Generationmodule (§3.1.2) computes representative ramp

signatures by incorporating multiple ramp signals of each ramp.

Finally, the ramps’ signatures along with their ground-truth (lat,

lon) location are saved to the cloud.

3.1.1 Pre-processing. Given the gyroscope signals from an SMD

traversing a route with several ramps, this module outputs their

individual ramp signals. First, we reduce high-frequency noise in

the gyroscope signal (G [C]) by utilizing ExponentiallyWeighted Mov-

ing Average to obtain a smoothed signal (~ [C]) as follows: ~ [C] =

U×~ [C − 1]+(1−U)×G [C]. We set the smoothing factor, U , to 0.99, as

it achieves a good trade-o� in retaining ramp’s uniqueness, while

removing noise due to di�ering riding patterns and mobility types.

Subsequently, we identify the ramp signals by determining their

boundaries based on the signi�cant variations observed in gyro-

scope signal (as depicted in the signals from Figure 2(b)). Finally,

we equalize the duration of ramp signals and normalize their am-

plitudes using z-score normalization, to facilitate subsequent signal

comparisons. In particular, we equalize the duration of each ramp

signal by re-sampling it to the average duration (namely, L) of

bootstrapping ramp signals.

3.1.2 Ramp Signature Generation. We compute the representative

ramp signatures per ramp, leveraging ramp signals from multiple

traversals (as depicted in the corresponding module of Figure 3).

Learning a good ramp representation is challenging due to varying

riding speeds, causing peaks in ramp signals to occur at di�erent

times. Hence, using a simple averaging technique result in dis-

torted patterns.We solve this by leveraging Dynamic Time-Warping

Barycenter Averaging (DBA) to compute the ramp signature, as it

preserves the underlying characteristics of the ramp signals [16].

In particular, the DBA algorithm �nds the optimal average signal

that minimizes the sum of squared DTW distance among ramp

signals [21]. Furthermore, we apply Sakoe-Chiba band (window

size = 0.2L), to narrow the warping window, thereby improving

computational e�ciency [7].

3.2 Localization Phase

This phase predicts accurate ramp-level location of a SMD travers-

ing an unknown route. First, in the Pre-processing module (§3.1.1),

we detect ramp signals from the SMD’s sensor data. Then, in the

Search Space Reductionmodule (§3.2.1), we leverage the rider’s noisy

GPS readings to reduce the search space to candidate ramps. Sub-

sequently, in the Ramp Prediction module (§3.2.2), we compare the

ramp signal with the ramp signatures of candidate ramps, to predict

the ramp with maximum similarity. Finally, the Connectivity-based

Correction (§3.2.3) module further improves ramp predictions by

incorporating the geographical connectivity of ramps.

3.2.1 Search Space Reduction. This module utilizes the noisy GPS

to reduce the search space to candidate ramps by �nding the ramps

within the GPS error boundary. By reducing the search space, we

improve the ramp prediction accuracy and reduce the overall com-

putation cost in subsequent modules. Figure 4(a) depicts an example

of the rider traversing a route and riding over three ramps, '1, '3,

and '5. The �rst detected ramp, '1, has the GPS error boundary,

�1, which includes candidate ramps, '1, '2. This in turn yields four
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Figure 3: Figure depicts the overview of RampScope’s system design, consisting of two phases, namely the Bootstrapping and

Localization phases. In the Bootstrapping phase, we leverage gyroscope signals from multiple traversals of each ramp to

compute a representative ramp signature, while in the Localization phase, we input gyroscope signals from SMDs traversing an

unknown route to output their accurate ramp-level location.
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Figure 4: (a) depicts the scenario of an SMD rider traversing through three ramps, and their respective GPS error boundaries. (b)

depicts the ramp prediction module that outputs the most likely ramp based on the highest similarity to underlying ramp

signatures, and (c) depicts the connectivity-based correction module that further takes the geographical connectivity of ramps

to provide a more accurate ramp-level location.

candidate ramp signatures, namely, '+
1
, '−

1
, '+

2
, '−

2
, where ‘+’ and ‘-’

denotes the two directions of ramp traversals. Note that we compute

separate ramp signatures for the two di�erent driving directions

of the same ramp due to asymmetricity of ramp signals (assuming

that the direction of travel is unknown) 2.

3.2.2 Ramp Prediction. We predict the most likely ramp, by taking

as input the ramp signal and the candidate ramp signatures. We

leverage DTW distance to compare the ramp signal with each of the

candidate ramp signatures, and output the ramp with the least DTW

distance (i.e, highest similarity). For example, Figure 4(b) depicts

prediction of three ramps – '−
2
, '−

3
, and '+

5
, for the three detected

ramps, respectively.

3.2.3 Connectivity-based Correction. We improve the ramp predic-

tion by incorporating the underlying connectivity between ramps.

Although the previous module outputs the ramp with the least

DTW distance, it may still result in incorrect predictions due to

noise in ramp signals, owing to di�erent driving patterns, speed or

2We set the ‘+’ direction as (1) driving bottom to top (for lateral ramps), or (2) driving
left to right (for horizontal ramps), and the other direction as ‘-’.

entrance/exit points of ramps. We solve this problem by predict-

ing a sequence of connected ramps that minimizes the overall DTW

distance. Speci�cally, we generate a route graph, where for each

detected ramp, we include nodes corresponding to ramps within

its GPS boundary, BC . Each node has an associated weight, equal to

the normalized DTW distance of the ramp signal with this node’s

(or ramp’s) signature. Furthermore, we add a directed edge between

nodes of adjacent boundaries (i.e., B8 and B8+1), if they are geo-

graphically connected. For example, in the route graph depicted

in Figure 4(c), we connect nodes, '+
1
, and '+

3
, as forward (right-

ward) traversal (’+’) of ramp, '1, is connected to forward (upward)

traversal (’+’) of ramp, '3 (from Figure 4(a)). Finally, we leverage

Dijkstra’s algorithm to identify a sequence of connected ramps with

the least sum of DTW distances. Figure 4(c) highlights the �nal pre-

diction, namely, ramps '+
1
, '+

3
, and '+

5
, which represent the rider’s

accurate ramp-level location.

4 PRELIMINARY EVALUATION

We now present RampScope’s preliminary evaluation results.
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Figure 6: Figure depicts the accuracy for the ramps predicted

by the Ramp Prediction (i.e., before correction; §3.2.2) and

Connectivity-based Correction (i.e., after correction; §3.2.3)

modules across (a) di�erent GPS error boundaries, and (b)

di�erent SMD types.

4.1 Experiment Setup

Apparatus.We use three di�erent types (totaling nine instances)

of SMDs: bike - Alton City 260X Classic, e-bike - Alton Benzo 20

ST, and e-scooter - Bird Two and Ninebot ES2, with 24, 20, and 10

inch wheels, respectively. We a�x the sensor module (i.e., MEMS

gyroscope, LPY503AL, interfaced with an Arduino) on the SMDs

(Figure 5(a)), to collect angular velocity (500Hz sampling rate) from

its pitch axis.

Data Collection. We recruit two participants to collect data by

riding the SMDs. For the Bootstrapping phase, one participant rides

across 24 ramps (i.e., all ramps depicted in Figure 5(b)) for a total

of �ve trials on all three SMD types. For the Localization phase,

the other participant rides each SMD type, for a total of ten trials,

along an 800-meter route containing eight ramps, as depicted by the

trajectory in red in the �gure. We enforce an upper-bound speed

limit of 20km/h. We conduct the experiments by adhering to our

university’s Institutional Review Board (IRB) approval.

4.2 Preliminary Results

4.2.1 Di�ering GPS Error Boundaries. Recall that RampScope lever-

ages GPS boundaries in order to reduce the space of ramp signatures

(§3.2.1). In this experiment, we report the accuracy of ramp pre-

diction across all three SMD types, as we arbitrarily vary the GPS

boundary diameters from 30 m to 90 m. In particular, we compute

the ramp prediction accuracy as the percentage of all ramps that are

correctly identi�ed. As depicted in Figure 6, RampScope achieves

an average accuracy of 81.2% before correction, and an improved

average accuracy of 98.1% after connectivity-based correction. Al-

though the accuracy drops with increasing GPS error boundary, the

after-correction accuracy is still above 95%, depicting the robustness

of RampScope to GPS error.

4.2.2 Di�ering SMD Types. We evaluate RampScope for each of

the aforementioned SMD types with a �xed GPS error boundary of

50 m. As depicted in Figure 6, RampScope achieves a high accuracy

above 96% in all three cases, after the connectvity-based correction.

Furthermore, we observe that e-scooter achieves the least accuracy

of 75% and 96.3%, in the before and after correction settings, re-

spectively. We attribute this result to their smaller wheel diameter

of e-scooters which results in reduced damping, and subsequently

increased noise in the gyroscope signals [5].

5 DISCUSSION

We discuss deployment considerations and future direction.

5.1 Deployment Considerations

Bootstrapping Data Collection. Recall from §3.1 that RampScope

requires collecting data from multiple riders with known route

information (i.e., lat-lon coordinates of the driven ramps). We en-

vision utilizing the following resources to collect such data. The

shared mobility service already hires employees or volunteer charg-

ers (e.g., Lime Juicers [12]) to recharge their SMDs on a daily basis.

Furthermore, if RampScope is deployed, we also envision crowd-

sourcing users’ data and utilize online learning techniques to keep

updating the ramp signatures. Moreover, we also envision utilizing

autonomous delivery robots [13]. These data collection processes

are synonymous to collecting and updating Google Street View

data, but at a much smaller scale, as RampScope only needs to be

operational in dense urban areas.

Saving Ramp Coordinates. RampScope locates SMDs to the lat-

lon coordinate of the nearest ramp, saved in map data such as

OpenStreetMap [15]. We envision that including ramp coordinates

in the map data is certainly possible; some governments already

release open-source data of the lat-lon coordinates of ramps [14].

Also, one study develops the ramp detection method from Google

Street View, facilitating ramp coordinate inclusion in map data [8].

Driving on Sidewalks. RampScope localizes the SMDs only when

they are driven over the ramps on sidewalks. While some countries

allow SMDs to also be ridden on the roads, many riders choose

to ride them on the sidewalks for safety reasons [20]. We can also

incentivize the users to ride on the sidewalks to gain RampScope’s

localization bene�ts.

Impact of Environmental Changes. We conjecture that as long

as environmental changes (e.g., light snow or ice) do not distort the
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di�erences in ramp components, the motion of SMDs is hardly af-

fected. Furthermore, even if there are signi�cant changes that incur

failure of the ramp prediction (e.g., heavy snow), the connectivity-

based correction algorithm further revises the mispredictions.

5.2 Future Directions

Through this work, we hint at the possibility of utilizing abundant

yet seemingly insigni�cant road context (i.e., the unique shape of

each ramp) captured by SMDs to provide additional functionality,

namely reducing the GPS localization error. As a future direction,

we envision utilizing additional sensors (e.g., accelerometers, mag-

netometers, and barometers) to capture a variety of road contexts

– including elevation, slope, bumpiness, and manhole covers – for

other novel applications. One such application is the detection of

illegal parking without the need for additional infrastructure. To

accurately identify illegal parking of SMDs, it is important to esti-

mate the last location of the SMDs. This can be achieved through

the implementation of dead-reckoning techniques, but these meth-

ods are prone to accumulate errors over time. We anticipate that

incorporating road context information can reset these errors and

enhance the precision of last location estimation of SMDs.

6 RELATED WORK

Several works utilize road context for improving localization ac-

curacy and monitoring road conditions [1, 6, 11, 18]. For exam-

ple, CARLOC, utilizes di�erent road landmarks to augment dead-

reckoning error to accurately localize cars on a road. While we

are inspired by this work, we extend this further and capture the

seemingly insigni�cant uniqueness of each ramps utilizing a gyro-

scope sensor. Furthermore, we extend RampScope from our prior

work [18] to incorporate correction based on ramp connectivity

making the localization system more robust against a variety of

noise sources. Furthermore, we design RampScope to be robust

against di�erent SMD types.

7 CONCLUSION

We present RampScope, a novel ramp-level localization system for

shared mobility devices (SMDs), that is able to accurately localize the

devices to the nearest driven ramp. RampScope utilizes the physical

phenomenon that the sidewalk ramps are prevalent and are unique

in their shape. RampScope leverages the gyroscope sensors equipped

on the SMDs to capture the motion signal to uniquely identify the

ramp and match it to its physical location (i.e., lat-lon coordinate).

We present a preliminary evaluation to verify that RampScope is

able to accurately identify and localize the ramps driven on a 800 m

segment with an average ramp prediction accuracy of 98.1 %.
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