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ABSTRACT
Drones are gaining a lot of traction in a wide spectrum of applica-
tions. This popularity makes them attractive attack surfaces, which
necessitates the need for ensuring their security. Specifically, in
the case of drone delivery, an attacker drone may impersonate
the legitimate one in order to steal packages, which makes drone
authentication important. Recent efforts have pushed to incorpo-
rate digital certificates as an authenticator for drones. However,
such software-based techniques are often compromised and can be
launched on a large scale, making them a bigger threat. To this end,
we propose SoundUAV as an additional factor of authentication
that leverages differences in the acoustic noise characteristics of
drones to fingerprint them. These differences are caused due to man-
ufacturing defects in their motors, making them hard to replicate.
Moreover, SoundUAV does not require any hardware modifications
to existing drones as they leverage the freely available sound in-
formation, and it is also robust to large-scale attacks as the attacks
involve hardware alterations. To test the feasibility of SoundUAV ,
we evaluate it on 54 motors, and 11 drones of the same make and
model, and report fingerprinting accuracy of 99.48%.

CCS CONCEPTS
• Security and privacy→Authentication; •Hardware→ Sen-
sor applications and deployments; Sound-based input / out-
put.
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1 INTRODUCTION
Drone-based delivery is gaining considerable attention due to their
cost effectiveness and timeliness, with a market projection of $29B
within the next decade [4, 48]. In this regard, online retailers such
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as Amazon and Alibaba are prototyping systems to deliver goods
from their warehouse to customers via drones [3, 27]. Courier
service companies including UPS and DHL, in addition to postal
services are also initiating the use of drones for their expedited
delivery [16, 43, 45, 46].

With this soaring popularity of drone delivery comes the down-
side of numerous attack possibilities. Among many attacks, we
envision a likely attack in a drone-based delivery setting, namely
drone impersonation attack. Specifically, in the case of drone-based
courier services where a delivery drone collects package from a
sender and delivers it to designated recipient, an attacker dronemay
impersonate the legitimate one in order to steal the package. This
is analogous to a real-world human-based delivery impersonation
attack where adversaries pose themselves as delivery personnel for
monetary benefits [10, 22, 32]. With autonomous drone delivery
becoming closer to reality, authentication of drones is critical for
delivery services in order to prevent such impersonation attacks.

Several companies and government organizations have put forth
preliminary techniques for the drone authentication problem, such
as engraving of registration number on the drone’s exterior and
broadcasting unencrypted identity information [28, 30]. As these
techniques are susceptible to copy attacks, DigiCert and Airmap
proposed utilizing Public Key Infrastructure (PKI), specifically lever-
aging digital certificates for drones [9]. Digital certificates enable
publicly verifiable identity, which in turn serves as a “virtual license
plate” for drones. Unfortunately using such software-based solu-
tions may still pose potential risks as we witness numerous attacks
which compromise certificates, by attacking certificate authori-
ties [6, 8, 24] and web servers [12, 51], in addition to issuing fake
certificates [19], ultimately resulting in successful impersonation.

In order to defend against the aforementioned software-based
impersonation attacks, we ask the question: “Can we enable a sec-
ond factor of authentication for delivery drones that – (1) is difficult
to replicate, (2) is robust to large-scale attacks, and (3) requires no
hardware modifications to drones?”. To answer this question, we ex-
plore the possibility of utilizing acoustic noise of drones to uniquely
identify or fingerprint them. To this end, we present SoundUAV 1,
an acoustics-based fingerprinting system, as an additional factor of
authentication, that leverages hardware imperfections of brushless
motors, which are a major contributor for noise in drones.

Figure 1 illustrates an exemplary scenario of SoundUAV ’s two-
factor authentication for drone delivery services. In this case, 1○
sender requests for a delivery drone from the courier company’s
app, which 2○ sends a drone to the docking station outside the
sender’s residence. On the drone’s arrival, the sender verifies its dig-
ital certificate (i.e., first factor of authentication). Subsequently, 3○
the microphone in the station captures the drone’s sound, which is
1pronounced as “sound wave”
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Figure 1: Figure depicts an exemplary scenario of Sound-
UAV ’s two factor authentication for drone delivery. 1○
Sender requests for a drone through the delivery app. 2○ A
drone arrives at the docking station closest to the sender. 3○
The microphone in the station captures the drone’s sound.
4○ The recording is verified by SoundUAV on the app. 5○ On
successful verification, the sender loads the package.

4○ utilized by SoundUAV to perform acoustics-based fingerprinting
(i.e., second factor of authentication). Upon successful verification,
5○ the sender hands over the goods to the drone.
Designing SoundUAV comes with the key challenge of finding

hardware imperfections of motors from acoustic signals of drones
that are sufficiently distinguishable even across drones of same
make and model. We address this challenge by extracting features
from electromagnetic and mechanical noise of motors to train a
classification model of legitimate drones (e.g., drones that belong
to a courier service). SoundUAV uses the trained model for authen-
tication of drones during delivery.

Utilizing acoustic noise characteristics of drones is advantageous
for several reasons. First, it is hard to forge the acoustic fingerprints
as SoundUAV leverages the manufacturing irregularities which
are difficult to replicate. Second, SoundUAV is robust to large-scale
attacks as the attacks on SoundUAV would require alterations to the
motors in drones. Third, SoundUAV takes advantage of the acoustic
noise that is already prominent in drones, thereby requiring no
hardware modifications on them.

To evaluate SoundUAV we collect audio data from 54 motors
across six different makes andmodels. We further collect recordings
from 11 quadcopter drones within the same make and model. We
extract relevant features that exhibit uniqueness of drones from
the recordings and use them to train an SVM classifier. With this
trained model, we report drone fingerprinting accuracy of 99.48%.

The rest of the paper is organized as follows. In Section 2, we
define our system and threat models, and provide necessary back-
ground information in Section 3. Subsequently, we present Sound-
UAV ’s design and evaluation in Sections 4 and 5, respectively. We
discuss deployment considerations and related work in Sections 6
and 7, respectively, and conclude in Section 8.

2 SYSTEM AND THREAT MODEL
In this section, we present SoundUAV ’s system and threat models.

System Model. The main goal of SoundUAV is to provide au-
thentication of delivery drones by leveraging the hardware imper-
fections of their motors that are reflected in the drones’ acoustic
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Figure 2: (a) Ideal scenario consisting of zero offset between
rotor and stator centers. (b) The non-zero offset between sta-
tor and rotor centers is one the main causes for uniqueness
in electromagnetic noise across different motors.
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Figure 3: Plot depicts feasibility of sufficiently distinguish-
ing individual motors within the same make and model us-
ing cepstral features.Weobserve two clusters,A1 andA2, rep-
resenting the two motor instances within Type A.

emanations. To provide such an authentication system, we require
SoundUAV to be (1) difficult to forge, (2) robust to large-scale attacks,
and (3) free of any hardware modifications on drones. In order to
meet these requirements, we assume that the drone is authenticated
inside a courier service docking station with a built-in microphone.

Threat Model. Attacker’s goal is to launch an impersonation
attack to authenticate its drone, Ad , as a legitimate drone, Ld ,
whereLd ∈ L, denoting the set of all legitimate drones. We assume
that the attacker is capable of compromising the digital certificate
of Ld . We also assume that Ad is of same make and model as Ld .

3 BACKGROUND
In this section, we provide some relevant background for SoundUAV .
We briefly describe the inner workings of brushless motors and the
noise sources in them, along with providing preliminary evidence
on the feasibility of fingerprinting motors.

3.1 Brushless Motors and the Noise Sources
Drones are commonly equipped with brushless motors due to their
high efficiency [49]. These motors have multiple stationary wind-
ings (stator), and rotating permanent magnets (rotor). When the
current flows through the stator, a rotating magnetic field is cre-
ated, and the interaction of this magnetic field with the magnets,
causes the rotor to rotate. Electronic Speed Controller (ESC) obtains
constant feedback about the rotor’s position and helps maintain
steady rotation of the rotor.
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Figure 4: Flowchart depicts overall design of SoundUAV . In the Training Phase, SoundUAV obtains audio samples from n
legitimate drones, extracts cepstral features, and input them along with corresponding true labels (i.e., L1, . . . ,Ln ) into SVM
to obtain a set of trainedmodels,T . During theAuthentication Phase, SoundUAV extracts features froma dronewith unknown
label, i.e., Lunknown , and uses T to obtain its predicted label as well as confidence scores.

We leverage two sources of noise in motors for the task of finger-
printing — electromagnetic noise andmechanical noise. Electromag-
netic noise is produced by changes in electromagnetic forces with
the varying angular positions of the rotor, which causes vibrations
to the motor’s body [29]. Such forces occur due to the presence of
non-uniform air-gap between stator and rotor, which is a result
of non-zero offset between their centers as depicted in Figure 2.
This offset occurs due to manufacturing defects such as incorrect
placement of rotor during assembly [23, 39]. On the other hand, me-
chanical noise is caused due to rotor unbalance, misalignment, and
looseness which produces additional vibrations [25, 34]. SoundUAV
leverages the above two noise sources caused by manufacturing
defects to accurately fingerprint drones.

3.2 Feasibility of Motor Fingerprinting
We present preliminary evidence on the feasibility of uniquely
fingerprinting motors (thereby fingerprinting drones). Specifically,
in Figure 3, we plot two cepstral features (Section 4.2) from sound
recordings of two motors of three types (six in total) to demonstrate
sufficient separation. We observe two distinct clusters within each
motor type, indicating the feasibility of fingerprinting a motor
even within the same type. We present detailed results on motor
fingerprinting in Section 5.2.

4 SYSTEM DESIGN AND IMPLEMENTATION
In this section, we present the design and implementation of Sound-
UAV and illustrate the steps involved as a flowchart in Figure 4.
In the training phase, SoundUAV pre-processes the audio samples
obtained from n legitimate drones (Section 4.1), extracts cepstral
features (Section 4.2), and trains an SVM classifier (Section 4.3) to-
gether with the true labels (i.e., drone labels: L1, . . . ,Ln ) to obtain
a set of trained models, T . During the authentication phase, i.e., the
testing phase, SoundUAV takes as input the acoustic signal of an
unknown drone to fingerprint (i.e., Lunknown ), repeats the above
steps to extract the relevant features, and inputs them into T , to
obtain the predicted label and confidence scores.

4.1 Pre-processing
Pre-processing consists of DC Offset Removal and Peak Normaliza-
tion steps. In DC Offset Removal module, we remove the non-zero
mean by subtracting the mean of the signal from all samples, in
order to prevent clipping of high amplitude regions in the audio and
low-frequency distortions [7]. In Peak Normalizationmodule, we set
all maximum amplitudes to the same level for more accurate feature
extraction as drone recordings may have differing amplitudes.
4.2 Cepstral Feature Extraction
We partition the pre-processed signal into frames of fixed length
and repeat the following steps for each frame. First, we perform a
Hamming window operation to smoothen the signal boundaries
and compute the absolute value of the Discrete Fourier Transform,
which gives the magnitude spectrumM of the windowed signal.
We then apply t overlapping triangular bandpass filters (or fil-
terbanks), f0, . . . , ft−1, over M and obtain energies E0, . . . ,Et−1
correspondingly. Each energy term Ei , 0 ≤ i < t , is computed as
the logarithm of the sum of amplitudes of M on applying filter fi .
Lastly, we decorrelate the energy terms by applying Discrete Cosine
Transform over them to obtain cepstral coefficients/features [37].
The lower coefficients of the cepstral features contain information
about the spectral shape, while the higher coefficients describe the
finer details in the spectrum.

From our analysis of the magnitude spectrum of the drone’s
acoustic signal, we make two observations — (1) the energy vari-
ation patterns across the various frequency bands (i.e., spectral
shape) are unique to each drone; and (2) there exists certain fre-
quency bands in which a drone consistently has higher or lower
energies compared to all other drones (i.e., combination of spectral
shape and details). These two observations make cepstral features
suitable for drone fingerprinting. For extracting cepstral features,
we apply filterbanks over the entire frequency range from 0-22
kHz, with bandwidth of 500 Hz and overlap of 250 Hz. We consider
the entire range as the harmonics due to the drone’s rotation have
considerable energies even at high frequencies.

The task of drone fingerprinting is analogous to that of human
speaker identification, as in one case we identify the uniqueness
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Figure 5: Figures depict (a) experimental setup in sound
booth with drone, microphone, Arduino and power supply;
and (b) 6 different make and model motors from Types A-F.

in the structure of the motor, while in the other we identify the
structure of the vocal tract. However, the Mel-frequency Cepstral
Coefficients (MFCC) filterbanks [37], commonly used for speaker
identification, are not suitable for our task as they focus on frequen-
cies only upto 7 kHz.

4.3 Classifier
We implement Support VectorMachines (SVM) classifier with radial
basis function as the kernel for drone fingerprinting. During train-
ing, we construct models, T = {T1, . . . ,Tn }, where n corresponds
to the number of drone labels in the training data. Each model, Ti ,
learns to differentiate drone label, Li , from all other labels. We
empirically choose the SVM parameters — soft-margin parame-
ter and kernel parameter by grid search on the cross-validation
data, common to all models. During authentication, we output the
predicted label as the index of the trained model that outputs the
maximum confidence score and all the confidence scores.

5 EXPERIMENTAL EVALUATION
In this section, we describe the experimental setup and evaluate
the performance of SoundUAV for drone fingerprinting.

5.1 Experimental Setup
We conduct our experiments in a sound booth as shown in Fig-
ure 5(a). We firmly affix the drone frame containing motors and
Electronic Speed Controllers (ESCs) onto a wooden frame in order
to keep the drone stationary during the experiments.

We use the DJI f 450 frame [17] and four EMAX SimonK 12A
ESCs [21]. Also, we have a total of 54 motors of six different makes
and models (Types A-F) as illustrated in Figure 5(b). We provide the
details in Table 1. We use an Arduino Uno [5] to provide input to
the ESCs, which are powered by 12 V constant DC power supply.

We collect data from single motors as well as drones (i.e., an
assembly of four motors), by operating them for 30-60 seconds at
a constant speed of 6045 rotations per minute (RPM), which rep-
resents normal flight RPM. We conduct the experiment over three
days in order to ensure that the results obtained are not influenced
by any specific physical arrangement or ambient conditions. For

Motor type Motor Make and Model No. of motors
Type A HengLi W42-20 [1] 2
Type B XXD A2212/13T [2] 44
Type C Singahobby 4008 [41] 2
Type D Tahmazo ER221612d [42] 2
Type E EMAX MT2204 [20] 2
Type F Siglo 1804 [40] 2

Table 1: Table presents distribution of motors across differ-
ent motor types used in our experiments.

the same reason, we choose data from different days for training
and testing, except in Section 5.2.1 where we perform training and
testing on different motors. We record using an omnidirectional
Blue Yeti Pro microphone [50] with frequency response of 20 Hz -
20 kHz and sampling rate of 44.1 kHz. We partition each recording
into frames containing 214 samples each, corresponding to 0.37
seconds of audio. Detailed experimental results can be found in
https://bit.ly/2VfkEgZ.

5.2 Motor Fingerprinting
As a precursor to drone fingerprinting, we present the results of
motor fingerprinting, as motors are a major contributor for noise
in drones (as discussed in Section 3.1). Specifically, we evaluate
(1) motor type identification (i.e., make and model) and (2) motor
fingerprinting within a motor type.

5.2.1 Motor Type Identification. In order to identify the type of
motors, we collect 36 seconds of data from twelvemotors, consisting
two motors each of Types A-F. We partition these motors into
two sets, each containing one motor per type, and alternatively
use both sets for training and testing. On testing, we obtain a
classification accuracy of 92.65% for type identification of motors.
The corresponding confusion matrix is shown in Figure 6(a) and
its table format can be found in the link provided in Section 5.1.
Occasional misclassifications occur between Types E and F, which
could be due to their similar physical structures as illustrated in
Figure 5(b). From the results obtained, we infer that the distinct
acoustic patterns produced by different motor types can be utilized
to appropriately identify the make and model, i.e., type of a motor.

5.2.2 Motor fingerprinting within a single type. We further evaluate
the possibility of fingerprinting, or distinguishing unique motor
instances among samemotor types. Hence, we randomly choose ten
Type B motors (labeled B1, . . . ,B10) and collect 106 seconds of data
per motor for two days. We alternatively train and test with data
obtained from both days and obtain an average accuracy of 91.83%.
The confusion matrix for the ten different motors is shown in
Figure 6(b) with the corresponding table format available in the link
provided in Section 5.1. To understand the few misclassifications
(i.e., the non-diagonal elements), we conduct physical examination
of motors and observe that B4 and B5 produce additional vibrations
on rotation due to improper placement of the rotor in both motors.
We believe that the other misclassifications can also be explained
through correlation in physical structure. The takeaway point from
this experiment is that the subtle variations in physical structure of
motors of the same type can produce distinct acoustic patterns.

Session: UAV Localization, Authentication, and Data Collection Performance DroNet’19, June 21, 2019, Seoul, Korea

30



A B C D E F
True type labels

A

B

C

D

E

F

Pr
ed

ic
te

d 
ty

pe
 la

be
ls

0

20

40

60

80

(a) Motor make and model (i.e., type)
identification.
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(b) Motor fingerprinting within same
make and model.
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(c) Drone fingerprinting within same
make and model.

Figure 6: Figures depict confusion matrices representing performance of (a) motor type identification for six different types
from Type A-F; (b) motor fingerprinting on ten motors B1, . . . ,B10 of same make and model; and (c) drone fingerprinting on
eleven drones L1, . . . ,L11, each consisting of four motors of the same make and model.

5.3 Drone Fingerprinting
We further present the results on fingerprinting of drones, which
constitutes an assembly of four motors. We evaluate how the in-
terplay between motors, each with its own unique acoustic pat-
tern, contributes towards the overall noise characteristics of the
drone and to its fingerprinting. We evaluate on eleven drones,
L1, . . . ,L11, where each drone is an assembly of four Type B mo-
tors, i.e., Li = {Bi ,Bi+11,Bi+22,Bi+33}, 1 ≤ i ≤ 11. We collect 50
seconds of data per drone for three days. We perform training on
data collected over two days and utilize the rest for testing. We
evaluate over all possible train-test combinations and obtain an
average accuracy of 99.48%. The confusion matrix for the eleven
drones is as shown in Figure 6(c), with the corresponding table for-
mat provided in the link specified in Section 5.1. The test data are
predicted correctly for all cases except L1, which is misclassified
as L3 for eight of the 134 test data points corresponding to L1.

An interesting observation from Figures 6(b) and 6(c) is that the
accuracy for drone fingerprinting (99.48%) is superior to that of
motor fingerprinting (91.83%). This improvement in performance
is because each motor in a drone acts as an independent source of
uniqueness, hence finding two drones with four pairs of motors
with similar defects (or uniqueness) is less likely than finding just
one pair of motors with similar defects, which makes drones more
viable to fingerprinting in comparison to individual motors.

6 DEPLOYMENT CONSIDERATIONS
We now discuss practical considerations of deploying SoundUAV .

Unseen Drone Classification. In a real world scenario, we may
encounter drones that are not part of the training process. Hence,
we need an open-world classifier that can tell apart a drone en-
countered during training from a unseen one. To create such a
classifier, we modify our existing system to output “unseen” when
the confidence scores of all training models fall below a certain
threshold. We conduct a preliminary evaluation of this modified
system by choosing different number of unseen drones, nunseen ,
where nunseen ∈ {1, 2, 4} and obscuring them from the training
process. On testing with all the 11 drones for different values of
nunseen , we obtain an average accuracy of 90.8% (threshold = 0.3).
While a more comprehensive evaluation is needed, this result hints
at the feasibility of SoundUAV accurately classifying unseen drones.

Effects of adding propellers. In our experiments, we consider
drones without propellers and exploit the uniqueness in brushless
motors for drone fingerprinting. While both motors and propellers
contribute to the drone’s noise, as a first step towards fingerprinting,
we examine the effects of motors in this work. Moreover, there are
evidences for manufacturing defects in propellers [38, 47], and we
plan to investigate the role of these defects towards uniqueness of
drone’s sound as part of future work.

Effects of increasing the number of drones. We report a pre-
diction accuracy above 99% on fingerprinting eleven drones, but this
number may drop as we increase the number of drones. While we
will evaluate this aspect in our future work, current results may still
be relevant for authentication in cases involving small number of
legitimate drones such as small-scale parcel delivery services. Fur-
thermore, we hint at the possibility of fusing across other sensing
modalities such as RF to improve fingerprinting accuracy [33].

Controlled Experimental Setup. Recall from Section 5.1 that
we perform our experiments in a sound booth by placing a micro-
phone (around $130) in proximity to the drone. This setup resem-
bles the docking station as depicted in Figure 1, where the drone
is placed adjacent to the built-in microphone. Furthermore, our
preliminary results on inexpensive microphones, such as those in
laptops (around $15) is encouraging, hence making it possible to
reduce the deployment costs of such a station.

7 RELATEDWORK
We now present related work on device and drone fingerprinting.

Device Fingerprinting. Researchers demonstrate the feasibility
of fingerprinting various devices including loudspeakers, cameras,
3D printers and smartphones, by leveraging their manufacturing
defects [11, 15, 26, 31, 36]. In particular, work by Das et al. [13],
which demonstrates that speakers and microphones can be finger-
printed to uniquely identify mobile phones, is closely related to our
work. However, SoundUAV addresses more difficult challenges due
to the interplay between multiple noise sources (i.e., four motors).

Drone Identification and Fingerprinting. Several drone de-
tection systems exist utilizing RF, audio, and video signals [14,
18, 35]. For example, Matthan detects drones by observing their
physical characteristics from the transmitted wireless signal [33].
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However, these works differ from SoundUAV as we focus on finger-
printing of drones rather than detection. Gyrosfinger [44], the first
work to investigate the problem of drone fingerprinting to the best
of our knowledge, utilizes gyroscope offset values to differentiate
drones. Their technique, however, is constrained to work only on
drones that have an unencrypted telemetry channel. Contrarily,
SoundUAV is independent of the underlying protocols and works
on any drone as it leverages the noise characteristics of drones.

8 CONCLUSION
We propose SoundUAV as a second factor of authentication for
drones, specifically for the application of drone delivery. Sound-
UAV authenticates drones by fingerprinting them based on the
differences in their acoustic noise characteristics produced by the
manufacturing defects in their brushless motors. As we leverage
the hardware imperfections of motors, it is hard for an adversarial
drone to replicate the acoustic signals. Moreover, SoundUAV is ro-
bust to large-scale attacks and requires no modifications to existing
drones. We evaluate SoundUAV for the tasks of motor and drone
(i.e., four motor assembly) fingerprinting, and conclude that drones
are more viable to fingerprinting, as they have four independent
sources of uniqueness, making it less likely for two drones to be
similar. Further, we evaluate on 54 motors, and eleven drones of
the same make and model, and obtain a fingerprinting accuracy of
99.48% for drones, demonstrating the feasibility of our approach.

9 ACKNOWLEDGEMENTS
This research was partially supported by a grant from Singapore
Ministry of Education Academic Research Fund Tier 1 (R-252-000-
A26-133).

REFERENCES
[1] AliExpress. 2019. HengLi BLDC. https://bit.ly/2FFAdI7.
[2] AliExpress. 2019. XXD BLDC. https://bit.ly/2Uh8vLb.
[3] Amazon. 2016. Amazon Prime Air. https://amzn.to/2oFPnmj.
[4] Ayoub Aouad. 2018. Delivery companies are embrac-

ing drone technology. https://www.businessinsider.com/
delivery-companies-embracing-drone-technology-2018-6/?IR=T.

[5] Arduino. 2019. Arduino Uno. https://store.arduino.cc/usa/arduino-uno-rev3.
[6] Ionut Arghire. 2018. 23,000 Digital Certificates Revoked

in DigiCert-Trustico Spat. https://www.securityweek.com/
23000-digital-certificates-revoked-digicert-trustico-spat.

[7] Audacity. 2019. DC offset. https://manual.audacityteam.org/man/dc_offset.html.
[8] Tony Bradley. 2012. VeriSign Hacked: What We Don’t Know Might Hurt

Us. https://www.pcworld.com/article/249242/verisign_hacked_what_we_dont_
know_might_hurt_us.html.

[9] Jeff Chandler. 2016. AirMap, DigiCert Introduce First-Ever Digital
Identity Certificate for Drones. https://www.digicert.com/news/
2016-12-13-digicert-partners-with-airmap-for-drone-id/

[10] NBC Chicago. 2009. UPS Impersonator Robs Home-
owner. https://www.nbcchicago.com/news/local/
Fake-UPS-Deliverymen-Rob-Skokie-Man-52474932.html.

[11] William Banks Clarkson. 2012. Breaking assumptions: distinguishing between
seemingly identical items using cheap sensors. Ph.D. Dissertation. Princeton
University.

[12] Lucian Constantin. 2016. Cyberespionage groups are stealing digital cer-
tificates to sign malware. https://www.computerworld.com/article/3044728/
cyberespionage-groups-are-stealing-digital-certificates-to-sign-malware.html.

[13] Anupam Das, Nikita Borisov, and Matthew Caesar. 2014. Do you hear what I
hear?: Fingerprinting smart devices through embedded acoustic components. In
ACM Conference on Computer and Communications Security (CCS).

[14] Dedrone. 2019. Dedrone Homepage. https://www.dedrone.com.
[15] Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy Choudhury, and Srihari

Nelakuditi. 2014. AccelPrint: Imperfections of AccelerometersMake Smartphones
Trackable. In Network and Distributed System Security Symposium (NDSS).

[16] DHL. 2018. Parcelcopter 3.0. https://discover.dhl.com/business/business-ethics/
parcelcopter-drone-technology.

[17] RC Drones. 2019. DJI f450 frame. http://www.rc-drones.com/
-DJI-F450-Multirotor-Quad-Flame-Wheel-450-Frame_p_282.html.

[18] DroneShield. 2019. DroneShield Homepage. https://www.droneshield.com.
[19] John Dyer. 2015. China Accused of Doling Out Counterfeit Digital Certificates

in Serious Web Security Breach. https://bit.ly/2D53FH8.
[20] EMAX. 2019. EMAX BLDC. https://www.emaxmodel.com/

emax-multicopter-motor-mt2204-kv2300.html.
[21] EMAX. 2019. EMAX SimonK ESC. https://www.emaxmodel.com/

emax-simon-series-12a-for-multirotor.html.
[22] Social Engineer. 2019. Delivery Person. https://www.social-engineer.org/

framework/general-discussion/common-attacks/delivery-person/.
[23] Alfonso Fernandez. 2017. Eccentricity. https://power-mi.com/content/

eccentricity.
[24] Dennis Fisher. 2012. DigiNotar Hack Shows To-

tal Compromise of CA Servers. https://threatpost.com/
final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/
77170/.

[25] Jacek F Gieras, ChongWang, and Joseph Cho Lai. 2018. Noise of polyphase electric
motors. CRC press.

[26] Miroslav Goljan, Jessica Fridrich, and Tomáš Filler. 2009. Large scale test of
sensor fingerprint camera identification. InMedia forensics and security, Vol. 7254.
International Society for Optics and Photonics, 72540I.

[27] Leo Kelion. 2015. Alibaba begins drone delivery trials in China. https://www.
bbc.com/news/technology-31129804.

[28] Haye Kesteloo. 2018. New proposed French drone regulation requires remote
drone identification. https://dronedj.com/2018/04/11/french-drone-regulation/.

[29] Hong Joo Lee, Shi Uk Chung, and Sang Moon Hwang. 2008. Noise source
identification of a BLDC motor. Journal of Mechanical Science and Technology
(2008).

[30] Alan Levin. 2018. Drones May Need License Plates Soon. https://bloom.bg/
2klauuv.

[31] Zhengxiong Li, Aditya Singh Rathore, Chen Song, Sheng Wei, Yanzhi Wang, and
Wenyao Xu. 2018. PrinTracker: Fingerprinting 3D Printers using Commodity
Scanners. In ACM Conference on Computer and Communications Security (CCS).

[32] Mayra Moreno. 2016. Man posed as UPS driver to rob Galleria-area home. https:
//abc13.com/news/homeowner-brutally-beaten-by-fake-ups-delivery-driver/
1636109/.

[33] Phuc Nguyen, Hoang Truong, Mahesh Ravindranathan, Anh Nguyen, Richard
Han, and Tam Vu. 2017. Matthan: Drone presence detection by identifying
physical signatures in the drone’s RF communication. In ACM MobiSys.

[34] Michael Peter Norton and Denis G Karczub. 2003. Fundamentals of noise and
vibration analysis for engineers. Cambridge university press.

[35] Orelia. 2019. Drone-Detector. http://dronebouncer.com/en/orelia-drone-detector.
[36] Senthilkumar Chinnappa Gounder Periaswamy, Dale R Thompson, and Jia Di.

2011. Fingerprinting RFID tags. IEEE Transactions on Dependable and Secure
Computing (2011).

[37] Lawrence R Rabiner and Ronald W Schafer. 2011. Theory and applications of
digital speech processing. Vol. 64. Pearson Upper Saddle River, NJ.

[38] Tony Rogers. 2015. Injection Molding Defects. https://www.creativemechanisms.
com/blog/what-cause-injection-molding-defects-and-how-to-fix-them.

[39] MA Samonig and Th M Wolbank. 2017. Exploiting rotor slotting harmonics
to determine and separate static and dynamic air-gap eccentricity in induction
machines. In 2017 IEEE SDEMPED.

[40] Singahobby. 2019. Siglo BLDC. http://shop.singahobby.com/?q=node/36309.
[41] Singahobby. 2019. Singahobby 4008 BLDC. http://shop.singahobby.com/?q=

node/32508.
[42] Singahobby. 2019. Tazmazo ER-221612d. https://www.singahobby.com/index.

php/tahmazo-er-221612d-brushless-motor.html.
[43] Skycart. 2016. Swiss Post Parcel Delivery With Drones from Skycart. https:

//www.youtube.com/watch?v=gLx34DrQFO4.
[44] Yunmok Son, Juhwan Noh, Jaeyeong Choi, and Yongdae Kim. 2018. GyrosFinger:

Fingerprinting Drones for Location Tracking Based on the Outputs of MEMS
Gyroscopes. ACM Transactions on Privacy and Security (TOPS) (2018).

[45] Kelly Tay. 2015. SingPost completes successful test flight of drone
for mail delivery. https://www.businesstimes.com.sg/companies-markets/
singpost-completes-successful-test-flight-of-drone-for-mail-delivery.

[46] UPS. 2017. UPS Tests Residential Delivery Via Drone. https://www.youtube.com/
watch?v=xx9_6OyjJrQ.

[47] Loraine Vinot. 2015. Drone Propeller Manufacturing. https://www.youtube.com/
watch?v=D40CCaiLwPQ.

[48] PR News Wire. 2018. Global Forecast 2027. https://prn.to/2UKbigt.
[49] Padmaraja Yadamale. 2003. Brushless DC Motor Fundamentals. http://ww1.

microchip.com/downloads/en/AppNotes/00885a.pdf.
[50] Yeti. 2019. Blue Yeti Pro. https://www.bluedesigns.com/products/yeti-pro/.
[51] Kim Zetter. 2013. Gaming company certificates stolen and used to attack activists,

others. https://www.wired.com/2013/04/gaming-company-certs-stolen/.

Session: UAV Localization, Authentication, and Data Collection Performance DroNet’19, June 21, 2019, Seoul, Korea

32




