
Listen to Your Key: Towards Acoustics-based
Physical Key Inference

Soundarya Ramesh
sramesh@comp.nus.edu.sg

Department of Computer Science
National University of Singapore

Harini Ramprasad
harinir@comp.nus.edu.sg

Department of Computer Science
National University of Singapore

Jun Han
junhan@comp.nus.edu.sg

Department of Computer Science
National University of Singapore

ABSTRACT
Physical locks are one of the most prevalent mechanisms for secur-
ing objects such as doors. While many of these locks are vulnerable
to lock-picking, they are still widely used as lock-picking requires
specific training with tailored instruments, and easily raises suspi-
cion. In this paper, we propose SpiKey, a novel attack that signifi-
cantly lowers the bar for an attacker as opposed to the lock-picking
attack, by requiring only the use of a smartphone microphone to in-
fer the shape of victim’s key, namely bittings (or cut depths) which
form the secret of a key. When a victim inserts his/her key into the
lock, the emitted sound is captured by the attacker’s microphone.
SpiKey leverages the time difference between audible clicks to ulti-
mately infer the bitting information, i.e., shape of the physical key.
As a proof-of-concept, we provide a simulation, based on real-world
recordings, and demonstrate a significant reduction in search space
from a pool of more than 330 thousand keys to three candidate keys
for the most frequent case.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures; • Hardware → Sound-based input / output.

KEYWORDS
Side-channel Attacks; Acoustic Inference; Physical Key Security

ACM Reference Format:
Soundarya Ramesh, Harini Ramprasad, and Jun Han. 2020. Listen to Your
Key: Towards Acoustics-based Physical Key Inference. In Proceedings of the
21st International Workshop on Mobile Computing Systems and Applications
(HotMobile ’20), March 3–4, 2020, Austin, TX, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3376897.3377853

1 INTRODUCTION
Physical locks are the most prevalent means of securing objects
including doors and mailboxes. Among many types of locks, pin
tumbler locks are the most commonly used, with lock manufac-
turers Schlage and Yale dominating the market [6, 9, 16]. Despite
the rise in digital locks, conventional pin tumblers continue to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
HotMobile ’20, March 3–4, 2020, Austin, TX, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7116-2/20/03. . . $15.00
https://doi.org/10.1145/3376897.3377853

Figure 1: Figure depicts SpiKey attack scenario. Attacker
records the sound of victim’s key insertion to infer the
shape, or “secret”, of the key.

be widely deployed to secure homes and office spaces around the
world [24].

However, there are several known attacks on the pin tumbler
locks, with lock picking being one of the most widely known tech-
niques [17, 18]. This requires an attacker to insert tailored in-
struments into the lock and manipulate the internal components
(known as pins) of the locks to unlock without possession of a
key. Nonetheless, lock picking has significant limitations, which
is part of the reason why pin tumbler locks are still widely used.
For instance, lock picking requires specific training and practice,
and easily raises suspicion because it requires the attacker to insert
into the lock a pair of specialized tools which is inevitably notice-
able [2, 3]. In addition, lock picking inherently grants a single entry
upon successful picking and also leaves traces because the picking
scratches the surface of the pins [5, 22].

In light of these limitations, we pose the question – canwe design
an attack that is robust against the aforementioned challenges?
To answer this question, we present SpiKey, a novel attack that
utilizes a smartphone microphone to capture the sound of key
insertion/withdrawal to infer the shape of the key, i.e., cut depths

https://doi.org/10.1145/3376897.3377853
https://doi.org/10.1145/3376897.3377853

(referred to as bittings) that form the “secret” of the key, solely by
the captured acoustic signal. For example, as illustrated in Figure 1,
as a victim inserts the key into the lock, an attacker walking by the
victim uses his/her smartphone microphone to capture the sound.
However, it is extremely challenging to extract information from
the sound to infer fine-grained bitting depths which differ by 15
milli-inch (0.381 mm). To solve this challenge, SpiKey captures and
utilizes the time difference of audible clicks – that occur when ridges
of a key (that form due to cuts of key bittings) come in contact with
the pins inside the lock – to infer distances between the ridges given
a constant speed of key insertion. Subsequently, SpiKey leverages a
sequence of these inferred inter-ridge distances to ultimately infer
the bittings, or secret, of the key.

Because only requiring a smartphone microphone, SpiKey yields
many advantages such as enabling a layperson to launch the at-
tack, in addition to significantly reducing suspicion. Moreover, as
SpiKey infers the shape of the key, it is inherently robust against
anti-picking features in modern locks [17], and grants multiple
entries without leaving any traces. Overall, we make the following
contributions:

• We introduce a novel attack, SpiKey, to infer physical keys
with only a smartphone microphone.

• We present the design of the acoustics-based physical key in-
ference attack by introducing and solving the corresponding
challenges.

• We simulate based on real-world recordings and demonstrate
significant reduction in search space from a pool of more
than 330 thousand possible keys to three candidate keys for
the most frequent cases.

2 LOCK AND KEY CONSTRUCTION
We briefly explain the construction of a pin tumbler lock and its
key, as well as how the clicking sound occurs.

Pin tumbler lock comprises a set of six top and bottom pins
(p1, ..., p6), each connected by a spring, hence moves vertically as a
key is inserted. Bottom pins vary in lengths which correspond to
the cut depths of a matching key. When such a key is inserted, the
bottom pins are correctly positioned such that the top pins align
on a shear line, allowing the key to turn, and ultimately unlocking
the lock (depicted in Figure 2(a)). Adjacent pins are separated by
an inter-pin distance (αp).

Key comprises six bitting positions. For each position (bi), the
cut or bitting depth constitutes the “secret”. Bitting depth is a dis-
crete value ranging from 0 to bdepth (which ranges between 7-10
depending on key specifications). The bitting depths, b1b2 . . .b6,
are together referred to as keycode (e.g., 393597). Figure 2(b) illus-
trates these parameters. The increase in successive depths (on the
order of sub-millimeters) is referred to as increment (αd). Width of
each bitting position is root cut (αw) and the distance between adja-
cent bittings is bit spacing, which also equals the inter-pin distance,
αp . Cut angle (θ) is the inclination between the two inclines, origi-
nating from the bitting positions. In addition, there is a constraint
on the maximum permissible difference between adjacent bitting
depths in order to prevent the inclines from reducing the root cut
dimension, referred to as Maximum Adjacent Cut Specification, or
MACS (µ) [22]. In this paper, we refer to one of the most widely

Key shift

Before “click”

After “click”
r6

b5

0

. . .

(b)

(a)

(c)

Key Insertion

⍺p

⍺w ⍺d" 1

9

Figure 2: (a) With a correct key inserted, pins align on a
shear line and unlocks the lock; (b) depicts key construction
parameters; and (c) depicts key insertion producing click
sound as a pin slips off of a key ridge.

used key type, Schlage 6-pin C-keyway keys (bdepth = 10, µ = 7).
Hence, keycodes such as 230845 are not permitted because it has
adjacent bitting depths that are greater than µ (e.g., difference of 0
and 8 > µ = 7). While an entire key space is 106 keys, MACS along
with the bitting rules reduce it to 586, 584 [20]. We take advantage
of such reduction in key space as SpiKey ultimately needs to reduce
the key space to a subset of a small number of candidate keys.

Ridges (ri) form as the inclines (due to bitting depths) converge
(Figure 2(b)). During key insertion, SpiKey utilizes click sound that
occurs as a pin slips off the top of a ridge (Figure 2(c)). Due to the
presence of multiple ridges and pins, we obtain a series of clicks
introducing more challenges. SpiKey utilizes the clicks to ultimately
infer the distance between adjacent ridges as inter-ridge distance (di)
as all keys conform to the aforementioned construction parameters.

3 SPIKEY DESIGN
We present the design of SpiKey and illustrate the steps involved
(Figure 3). When a victim inserts a key into the door lock, an at-
tacker walking by records the sound with a smartphone micro-
phone. SpiKey detects the timing of these clicks from the sound
(Section 3.1). We then utilize the click timestamps to compute the
adjacent inter-ridge distances given a constant insertion speed
(Section 3.2). We use the computed distances to infer the relative
differences of adjacent bitting depths (Section 3.3), which SpiKey
exploits to ultimately obtain a small subset of candidate keys that
includes the victim’s keycode (Section 3.4).

3.1 Click Detection
We detect all click events from the audio recording. To provide a
better understanding, we posted a video of a corresponding spec-
trogram of key insertion recording at http://bit.ly/2JciYB6. Prior to
detecting clicks, we reduce the impact of low-frequency ambient
noise, by subjecting it to a high-pass filter, to retain only frequen-
cies above 15kHz that contains information about the clicks. Sub-
sequently, we identify the starting point of each click, or its onset,

http://bit.ly/2JciYB6

S∆ = (s2 s3 s4 s5

b1

)

b2

b3 b4 b5
b6

Rd = (d1 d2 d3 d4 d5)

d1 d2 d3 d4 d5

Inter-Ridge Distance

Inter-Bitting Sequence

Click Time Series

Click Detection

Audio Time Series

(a) (b)

Key
Search-Space

Candidate
Keys

Search-Space Reduction

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(c)(d)

Raw Audio

Candidate
Keys

(Sec 3.4) (Sec 3.3)

(Sec 3.2)(Sec 3.1)

Victim’s key

(Kcandidate)

(Kpool)

Figure 3: Figure depicts steps of SpiKey design to infer vic-
tim’s key from audio recording of key insertion.

in the pre-processed signal by applying change-point detection
algorithm [12] on short time-windows around the computed peaks
to account for their millisecond granularity. It finds the least sum of
standard deviations across two regions that transition from low to
high amplitude. We construct a click time series from the obtained
click onsets (Figure 3(a)).

3.2 Inter-Ridge Distance Computation
We now take the click time series to infer the inter-ridge distances
(Figure 3(b)). As a lock contains six pins, it adds additional chal-
lenges. For ease of explanation, we first present our approach for
a simple but hypothetical single-pin case (i.e., a lock containing
only one pin) and defer our explanation of the actual lock with
all six pins (i.e., multiple-pin case) to Section 3.5 as our approach
generalizes.

In a single-pin case, timestamps in the click time series cor-
respond to interactions of a single pin (p1) with all ridges of a
key. Upon obtaining all the timestamps, t1 to t6, corresponding
to clicks produced by ridges, r1 to r6, respectively, we compute
a sequence of inter-ridge distance, Rd = (d1,d2,d3,d4,d5) as
(t2 − t1, t3 − t2, t4 − t3, t5 − t4, t6 − t5) · skey , where skey , or speed
of key insertion, can be computed from other parameters. We also
defer the explanation of computing skey in the multiple-pins cases
to Section 3.5.

3.3 Inter-Bitting Sequence Computation
From a sequence of inter-ridge distances, Rd , we cannot directly
compute bitting depths as there is no direct correlation between the
two. However, there exists a correlation between Rd and relative
differences of adjacent bitting depths. We define and compute inter-
bitting sum capturing bitting differences from Rd , as a step towards
identifying the candidates keys, i.e., keycode formed by multiple
bitting depths.

3.3.1 Correlation between Inter-Ridge Distances and Bitting Depth
Differences. Recall from Section 2 that the formation of a ridge is
due to inclines arising from its two adjacent bitting depths. In this
regard, we observe that the precise location of the ridge is affected

3 4

9

3 4 5

3 4
1

da

db

dc

da < db < dc

b1 b2

b3

db

db

db

3 4 5

5 4 3

8
5

2

. . .

(a) (b)

Inter-bitting Sum Si = 0

(b2 - b3)

(4 - 9) = -5

(4 - 5) = -1

(4 - 1) = 3

-5 < -1 < 3
correlates

(b2 - b1)
+(b2 - b3)

(4 - 5) + (4 - 3)
= 0

(4 - 3) + (4 - 5)
= 0

(5 - 8) + (5 - 2)
= 0

r2

r3

Figure 4: Figure depicts (a) the correlation between inter-
ridge distances, d , and bitting depth differences (bi − bi+1)
– e.g., as the value of (b2 − b3) increases so does the distance
between ridges, r2 and r3; (b) different bitting triplets with
equal inter-ridge distance ofdb yield equal inter-bitting sum
(which is 0 in this case).

by difference in depth between these adjacent bitting positions,
which in-turn affects inter-ridge distance. To see why, consider the
bitting triplet, (b1,b2,b3), and the corresponding ridges in-between,
r2 and r3 (Figure 4(a)). Inter-ridge distance between r2 and r3 in-
creases with increase in bitting depth difference, (b2−b3). Similarly,
this distance also increases with increase in (b2 − b1). Hence, in
general, we observe that there exists a correlation between inter-
ridge distance, di and the two bitting depth differences, (bi − bi−1)
and (bi − bi+1).

Inter-bitting sum (si): For a bitting triplet (bi−1,bi ,bi+1), we
define inter-bitting sum, si , as the sum of bitting differences,
i.e., si = (bi − bi−1) + (bi − bi+1). For example, the triplet (3, 4, 9)
corresponds to an inter-bitting sum of (4−3)+ (4−9), which equals
−4. Likewise, triplets (3, 4, 5) and (3, 4, 1) yield inter-bitting sums,
0 and 4 respectively. Values of inter-bitting sum are discrete, and
constrained by the MACS, µ. For example, if µ = 7 (i.e., (bi − bi−1)
ranges from −7 to 7), inter-bitting sum is constrained to a total of
29 possible values from −14 to 14, where, a smaller si corresponds
to a shorter inter-ridge distance, di . Many bitting triplets can corre-
spond to the same inter-bitting sum (e.g., see Figure 4(b) depicting
multiple triplets for si = 0).

However, as we do not know the bitting depth, we use the cor-
relation of the inter-ridge distances, di , and the bitting differences
to compute si , or sum of bitting differences. Specifically, si is re-
lated to di as: si = (di − αp) · (

2 cot(θ/2)
αd

). Due to the consistency in
key-cutting parameters (bit spacing (αp), cut angle (θ), and depth
increment (αd)), we can compute inter-bitting sum, si , directly from
the inter-ridge distance, di , that later caters to inferring candidate
bitting depths.

3.3.2 Computing Inter-Bitting Sequence. We compute a sequence
of si values, from the inter-ridge distances, di , in Rd . As an inter-
bitting sum, si , constrains the value of its corresponding bitting
triplet, a sequence of such sums constrains all triplets in a key,
thereby significantly reducing the set of candidate keys. We define
such a sequence as inter-bitting sequence, S∆. Figure 3(c) depicts
S∆ = {s2, s3, s4, s5}, where each si correlates with bitting triplets
(b1,b2,b3), (b2,b3,b4), (b3,b4,b5) and (b4,b5,b6), respectively.

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

t↵p
<latexit sha1_base64="Kn10QkTR7FGRng+0d1vryomcsdk=">AAAB9XicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcB52VsW2LC3d9md05AL/8PGQmNs/S92/hsXuELBl0zy8t5MZuaFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ITVcCsWbKFDyTqI5jULJ2+H4Zua3H7k2Ilb3OEm4H9GhEgPBKFrpoYJB1qMyGdEgmVaCUtmtunOQVeLlpAw5GkHpq9ePWRpxhUxSY7qem6CfUY2CST4t9lLDE8rGdMi7lioaceNn86un5NwqfTKItS2FZK7+nshoZMwkCm1nRHFklr2Z+J/XTXFw5WdCJSlyxRaLBqkkGJNZBKQvNGcoJ5ZQpoW9lbAR1ZShDapoQ/CWX14lrVrVc6veXa1cv87jKMApnMEFeHAJdbiFBjSBgYZneIU358l5cd6dj0XrmpPPnMAfOJ8/LZSSSA==</latexit><latexit sha1_base64="Kn10QkTR7FGRng+0d1vryomcsdk=">AAAB9XicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcB52VsW2LC3d9md05AL/8PGQmNs/S92/hsXuELBl0zy8t5MZuaFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ITVcCsWbKFDyTqI5jULJ2+H4Zua3H7k2Ilb3OEm4H9GhEgPBKFrpoYJB1qMyGdEgmVaCUtmtunOQVeLlpAw5GkHpq9ePWRpxhUxSY7qem6CfUY2CST4t9lLDE8rGdMi7lioaceNn86un5NwqfTKItS2FZK7+nshoZMwkCm1nRHFklr2Z+J/XTXFw5WdCJSlyxRaLBqkkGJNZBKQvNGcoJ5ZQpoW9lbAR1ZShDapoQ/CWX14lrVrVc6veXa1cv87jKMApnMEFeHAJdbiFBjSBgYZneIU358l5cd6dj0XrmpPPnMAfOJ8/LZSSSA==</latexit><latexit sha1_base64="Kn10QkTR7FGRng+0d1vryomcsdk=">AAAB9XicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcB52VsW2LC3d9md05AL/8PGQmNs/S92/hsXuELBl0zy8t5MZuaFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ITVcCsWbKFDyTqI5jULJ2+H4Zua3H7k2Ilb3OEm4H9GhEgPBKFrpoYJB1qMyGdEgmVaCUtmtunOQVeLlpAw5GkHpq9ePWRpxhUxSY7qem6CfUY2CST4t9lLDE8rGdMi7lioaceNn86un5NwqfTKItS2FZK7+nshoZMwkCm1nRHFklr2Z+J/XTXFw5WdCJSlyxRaLBqkkGJNZBKQvNGcoJ5ZQpoW9lbAR1ZShDapoQ/CWX14lrVrVc6veXa1cv87jKMApnMEFeHAJdbiFBjSBgYZneIU358l5cd6dj0XrmpPPnMAfOJ8/LZSSSA==</latexit>

Time

Time

Time

(a) Original Time Series

(b) Shifted Time Series

(c) Single-pin Time Series Tsingle

* ClickA: p1 contacts r1 ClickB : p2 contacts r1

ClickA ClickB

t↵p
<latexit sha1_base64="Kn10QkTR7FGRng+0d1vryomcsdk=">AAAB9XicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcB52VsW2LC3d9md05AL/8PGQmNs/S92/hsXuELBl0zy8t5MZuaFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ITVcCsWbKFDyTqI5jULJ2+H4Zua3H7k2Ilb3OEm4H9GhEgPBKFrpoYJB1qMyGdEgmVaCUtmtunOQVeLlpAw5GkHpq9ePWRpxhUxSY7qem6CfUY2CST4t9lLDE8rGdMi7lioaceNn86un5NwqfTKItS2FZK7+nshoZMwkCm1nRHFklr2Z+J/XTXFw5WdCJSlyxRaLBqkkGJNZBKQvNGcoJ5ZQpoW9lbAR1ZShDapoQ/CWX14lrVrVc6veXa1cv87jKMApnMEFeHAJdbiFBjSBgYZneIU358l5cd6dj0XrmpPPnMAfOJ8/LZSSSA==</latexit><latexit sha1_base64="Kn10QkTR7FGRng+0d1vryomcsdk=">AAAB9XicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcB52VsW2LC3d9md05AL/8PGQmNs/S92/hsXuELBl0zy8t5MZuaFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ITVcCsWbKFDyTqI5jULJ2+H4Zua3H7k2Ilb3OEm4H9GhEgPBKFrpoYJB1qMyGdEgmVaCUtmtunOQVeLlpAw5GkHpq9ePWRpxhUxSY7qem6CfUY2CST4t9lLDE8rGdMi7lioaceNn86un5NwqfTKItS2FZK7+nshoZMwkCm1nRHFklr2Z+J/XTXFw5WdCJSlyxRaLBqkkGJNZBKQvNGcoJ5ZQpoW9lbAR1ZShDapoQ/CWX14lrVrVc6veXa1cv87jKMApnMEFeHAJdbiFBjSBgYZneIU358l5cd6dj0XrmpPPnMAfOJ8/LZSSSA==</latexit><latexit sha1_base64="Kn10QkTR7FGRng+0d1vryomcsdk=">AAAB9XicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcB52VsW2LC3d9md05AL/8PGQmNs/S92/hsXuELBl0zy8t5MZuaFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ITVcCsWbKFDyTqI5jULJ2+H4Zua3H7k2Ilb3OEm4H9GhEgPBKFrpoYJB1qMyGdEgmVaCUtmtunOQVeLlpAw5GkHpq9ePWRpxhUxSY7qem6CfUY2CST4t9lLDE8rGdMi7lioaceNn86un5NwqfTKItS2FZK7+nshoZMwkCm1nRHFklr2Z+J/XTXFw5WdCJSlyxRaLBqkkGJNZBKQvNGcoJ5ZQpoW9lbAR1ZShDapoQ/CWX14lrVrVc6veXa1cv87jKMApnMEFeHAJdbiFBjSBgYZneIU358l5cd6dj0XrmpPPnMAfOJ8/LZSSSA==</latexit>

Shifted by

Figure 5: Figure depicts (a) a total of 21 clicks from six pins
(e.g., p1 with six ridges, ..., p6 with one ridge); (b) a shift of
the original time series by a constant time offset, tαp ; and (c)
subtracting (b) from (a) to reduce the problem to a simple
single-pin case.

3.4 Key Search Space Reduction
Taking this inter-bitting sequence, S∆, we search for a subset of
candidate keys (Figure 3(d)). As each inter-bitting sum, si , is a
function of three adjacent bitting depths, by knowing the depths
of first two bitting positions, we can deterministically obtain all
other depths. For example, let S∆ = (4,−6, 4, 2), and let us choose
(b1,b2) = (4, 6). Then as s2 = (b2 − b1) + (b2 − b3), we obtain
b3 = 2b2 − b1 − s2 = 2 · 6 − 4 − 4 = 4. As we know, (b2,b3), we
can use their values, along with s3, to obtain b4. By finding all
remaining depths in this manner, we obtain the keycode 464886.
However, we do not know the depths of the first two bitting po-
sitions. Hence, we compute all possible values for b1 and b2, and
iteratively compute all remaining depths, based on S∆. We further
discard all candidate keys that have invalid bitting depths (i.e., that
do not satisfy the constraints of key specification such as MACS
and bitting rules [20]), to finally yield a small subset of candidate
keys.

3.5 Handling Multiple-Pin Case
Recall that aforementioned examples were for a simplified but
hypothetical single-pin case (i.e., a lock which contains only one
pin). We now explain how we solve the case for an actual 6-pin
lock (i.e., multiple-pin case).

3.5.1 Translating To A Single-Pin Case. As ridges are not equally
spaced in the key, clicks due to different pins may occur at slightly
different times. This results in an array of clicks, as depicted in
Figure 5(a). More specifically, there are a total of 21 clicks because
p1 comes in contact with all six ridges (r1, ..., r6) to yield six clicks,
while p2 comes in contact with first five ridges to yield five clicks,
and so on. In essence, the click time-series in the multiple-pin
case, is equivalent to several single-pin click time-series interleaved,
where each pin yields a similar but temporally offset click time-
series. This offset which arises due to distance between two adjacent
pins, is equal to the time taken by a ridge to move between the

At tcheck1

At tcheck2

* ClickA: p1 contacts r1 ClickC : p1 contacts r2ClickB : p2 contacts r1

t1 tcheck1
Time

t1 tcheck1
Time

ClickA

t2 t3 tcheck2
ORt2
ClickB

ClickC
OR
ClickC

ClickB
t3

ClickA

Figure 6: To identify the correct inter-pin time interval, tαp ,
we consider checkpoints tcheck1 and tcheck2 , to obtain times-
tamps of clicks. By tcheck1 , ClickA occurs (i.e., p1 contacts r1).
By tcheck2 , both ClickB and ClickC occurs (i.e., p2 contacts r1,
and p1 contacts r2). However, the order in which these two
clicks occur is unknown.

two, which we refer to as inter-pin time interval, tαp (Figure 5(a)).
To simplify the problem, we first create a shifted version of the
original click time-series that occurs tαp after it (Figure 5(b)). All
clicks (excluding clicks due to p1) in the original time series, have
clicks that coincide (i.e., occur at the same time) in the shifted
time-series. On eliminating all coinciding clicks in the original
time-series, we retain clicks only corresponding to p1, and hence
obtain a single-pin time series. We notate this retained time-series
as Tsinдle (Figure 5(c)).

3.5.2 Computing Inter-Pin Time Interval (tαp). To create the afore-
mentioned shifted time-series as depicted in Figure 5(b), however,
we need the inter-pin time interval, tαp . Time interval between first
click of p1 (with r1) and first click of p2 (also with r1) equals tαp .
We compute tαp , by obtaining the timestamps of both these clicks.
Correspondingly, the click time-series yields a set of timestamps
{t1, t2, . . . , t21}. In order to obtain the click timestamps, we con-
sider two time checkpoints, tcheck1 and tcheck2 , which indicate the
time at which p1 and p2 both rest on the first bitting position, b1,
respectively (Figure 6). By checkpoint tcheck1 , the only completed
click isClickA (first click of p1) at t1. By checkpoint tcheck2 , the ad-
ditional completed clicks areClickB (p2 contacts r1), andClickC (p1
contacts r2), although their order of occurrence is unknown. Owing
to this uncertainty, the timestamp corresponding toClickB is either
t2 or t3 (and vice versa forClickC). Hence, resulting two candidates
for tαp are (t2 − t1) and (t3 − t1). Subsequently, we obtain both their
respective single-pin click time-series, Tsinдle , and choose the one
with six timestamps, to identify the correct tαp value.

3.5.3 Computing Speed of Key Insertion (skey). Recall from Sec-
tion 3.2 that we also need to compute the speed of key insertion,
skey , to compute the inter-ridge distance. We compute skey =
αp/tαp , as we now know both of these values.

Figure 7: Histogram depicts number of elements in
Kcandidate obtained for all 330, 424 keys in Kpool .

3.5.4 Overlap Filter. For some keys, upon translating the multiple-
pin case to a single-pin case as described above, they may result
in less than six timestamps in the translated Tsinдle , rendering
the aforementioned methods insufficient. This is because clicks of
multiple pins coincide, or overlap, when distance between ridges
happens to be a multiple of inter-pin spacing, αp . To solve this
problem, SpiKey implements an Overlap Filter after the Click De-
tection module, by checking if the total number of clicks equals to
21. SpiKey proceeds with the attack if the detected clicks pass this
filter. We further discuss the implications of this filter in Section 5.

3.6 Handling Missing Ridges
Thus far, we utilize the clicks of ridges to reduce the search space
in inferring the victim’s key. However, there are a small proportion
of keys, in which certain ridges are absent. This happens when
the inclines arising from two adjacent bitting positions, converge
beyond the key blade height (i.e., maximum height allowed within
a key) and create a “plateau”. In such cases, key insertion and with-
drawal result in clicks at different ends of the plateau respectively
(as clicks only occur when a key pin falls off an elevated position).
We solve this problem by taking an average of inter-ridge distances
obtained in insertion and withdrawal cases.

4 FEASIBILITY STUDY
We now present our feasibility study and its results.

4.1 Simulation Setup and Implementation
We perform our analysis on Schlage 6-Pin C-keyway [15]. We define
Kpool as the set of all keys that are vulnerable to our attack, and
Kcandidate as the small subset of keys that is output by SpiKey,
which guarantees to contain the correct victim key.Kpool = 330, 424
keys as SpiKey filters overlaps (Section 3.5.4). For all keys in Kpool ,
we model their real shape (i.e., identify bitting depths and ridges),
based on key specifications, and obtain inter-ridge distances from
0.0310 − 0.2814 inches. As clicks occur from real-world acoustic

signals as depicted in Figure 3(a), we simulate such click time-
series for all possible victim keys in the pool, and obtain their
corresponding set of candidate keys,Kcandidate . We set the speed
of key insertion/withdrawal, skey to be 1 inch/s in all cases.

4.2 Preliminary Results
As a first step towards feasibility study, we evaluate SpiKey based
on the number of elements in the set of candidate keys,Kcandidate ,
which are reduced from Kpool . Figure 7 depicts a histogram of the
number of elements inKcandidate for all keys inKpool . Given the
click time-series of all 330, 424 keys as separate input to SpiKey,
we are able to provide for each input a subset of candidate keys,
where the number of elements range from 1 − 15. This means that,
on average, SpiKey is able to provide 5.10 candidate keys guaran-
teeing inclusion of the correct victim key from a total of 330, 424
keys, with 3 candidate keys being the most frequent case. This his-
togram demonstrates the impact of SpiKey as we further observe
that SpiKey guarantees reducing more than 94% of keys (313, 780
keys) to less than 10 candidate keys.

5 DISCUSSION
We now present relevant discussion points of SpiKey.

Impact of SpiKey: We demonstrate the impact of SpiKey as
it generalizes to different types (i.e., make and model) of keys as
long as insertions yield clicks and the keys conform to particular
specifications, even though we only analyzed on a single type,
namely Schlage 6-pin C-keyway. Furthermore, we also demonstrate
the impact of SpiKey despite reduced number of vulnerable keys.
Recall from Section 3.5.4 that SpiKey only proceedswith the attack if
multiple-pins do not create any overlapped clicks, thereby reducing
the total number of vulnerable keys to 56.3% (330, 424 of 586, 584
keys), which makes more than half of all possible keys vulnerable.

Real-World Considerations: An attacker needs to consider
the following to deploy SpiKey. First, we assume that the attacker
has the knowledge of the type of lock and key by examining the
exterior of the lock. Second, we assume that the speed does not
vary from start to end of a key insertion (or withdrawal) in order to
correctly infer the inter-ridge distances. This assumption may not
always hold in real-world, hence, we plan to explore the possibility
of combining information across multiple insertions.

Extending Attack Model: As another part of future work, we
may extend the threat model to construct more powerful attacks.
We may exploit other approaches of collecting click sounds such as
installingmalware on a victim’s smartphone or smartwatch, or from
door sensors that contain microphones [7, 21] to obtain a recording
with higher signal-to-noise ratio. We may also exploit long distance
microphones to reduce suspicion [1, 19]. Furthermore, we may
increase the scalability of SpiKey by installing one microphone in
an office corridor and collect recordings for multiple doors.

6 RELATEDWORK
Various attacks on physical lock systems have been proposed in
the past [4, 8, 13, 14]. A popular attack on pin tumbler locks is lock
picking, where the bottom pins are raised up to the shear line using
a pair of specialized tools, called pick and tension wrench, which
are inserted into the keyway [17, 18]. Another subcategory of lock

picking is lock bumping, which makes use of tools such as bump key
and a hammer, to separate the top and bottom pins at the shear line,
for a split second [23, 25]. SpiKey is inherently robust against many
of the drawbacks of lock picking and bumping, because SpiKey only
involves passively recording the sound of victim’s key insertion.
Hence, SpiKey enables a layperson to launch the attack without
requiring any special expertise nor tools other than a smartphone,
hence significantly reducing suspicion. SpiKey is inherently robust
against anti-picking lock features [17, 22] that are equipped with
many of the modern locks because SpiKey simply infers the key
without exploiting the lock. Furthermore, upon a successful SpiKey
attack, one can create or 3D print the key to grant him/herself multi-
ple entries without leaving any traces of the attack [5]. Researchers
recently proposed to infer keycode directly from an image of the
key [10, 11, 13]. While an image-based attack can be stealthy [13],
the attacker’s success is dependent on factors such as image clarity
and angle of view. However, SpiKey may complement image-based
key-inference attacks, as we make use of victim’s key insertion, an
inevitable part of the unlocking mechanism.

7 CONCLUSION
We present SpiKey, a novel attack that infers the keycode or “secret”
of a physical key by utilizing only a smartphone microphone to
capture the time difference between inherent click sounds produced
when the victim inserts the key into the lock. SpiKey inherently
provides many advantages over lock picking attacks, including low-
ering attacker effort to enable a layperson to launch an attack with-
out raising suspicion. We evaluate SpiKey with a proof-of-concept
simulation, based on real-world acoustic data, and demonstrate that
SpiKey can reduce the search space from a pool of more than 330
thousand keys to just three candidate keys for the most frequent
case.

8 ACKNOWLEDGEMENTS
This research was partially supported by a grant from Singapore
Ministry of Education Academic Research Fund Tier 1 (R-252-000-
A26-133).

REFERENCES
[1] Ampflab. 2019. Microphone Long Range Audio Surveillance. http://ampflab.com.

[2] Matt Blaze. 2016. Notes on Picking Pin Tumbler Locks. https://www.mattblaze.
org/papers/notes/picking/.

[3] Ryan Brown. 2019. Why criminals don’t pick locks. https://www.
art-of-lockpicking.com/criminals-dont-pick-locks/.

[4] Ben Burgess, Eric Wustrow, and J Alex Halderman. 2015. Replication prohibited:
attacking restricted keyways with 3D-printing. In 9th USENIX Workshop on
Offensive Technologies (WOOT’15).

[5] Datagram. 2009. Lockpicking Forensics. https://
www.blackhat.com/presentations/bh-usa-09/DATAGRAM/
BHUSA09-Datagram-LockpickForensics-PAPER.pdf.

[6] Adam Clark Estes. 2015. The History and Future of Locks and Keys. https:
//gizmodo.com/the-history-and-future-of-locks-and-keys-1735694812.

[7] Google. 2019. Nest Support. https://support.google.com/googlenest/answer/
9250972?hl=en-CA.

[8] HITBSecConf. 2017. A Guide to Key Impressioning At-
tacks. https://conference.hitb.org/hitbsecconf2017ams/sessions/
most-impressive-a-guide-to-key-impressioning-attacks/.

[9] IBISWorld. 2019. Door Lock & Lockset Manufacturing Industry in the
US - Market Research Report. https://www.ibisworld.com/united-states/
market-research-reports/door-lock-lockset-manufacturing-industry/.

[10] KeyMe. 2019. KeyMe Homepage. https://www.key.me.
[11] Keys4Classics. 2019. Keys Cut to Code. http://www.keys4classics.com/info/cut_

notes.html.
[12] Marc Lavielle. 2005. Using penalized contrasts for the change-point problem.

Signal processing 85, 8 (2005), 1501–1510.
[13] Benjamin Laxton, Kai Wang, and Stefan Savage. 2008. Reconsidering physical

key secrecy: Teleduplication via optical decoding. In Proceedings of the 15th ACM
conference on computer and communications security. ACM, 469–478.

[14] Anindya Maiti, Ryan Heard, Mohd Sabra, and Murtuza Jadliwala. 2018. To-
wards Inferring Mechanical Lock Combinations using Wrist-Wearables as a
Side-Channel. In Proceedings of the 11th ACM WiSec.

[15] LSA Michigan. 2019. Schlage Bitting Specifications. https://www.lsamichigan.
org/Tech/SCHLAGE_KeySpecs.pdf.

[16] CBS News. 2018. Yale Locks. https://www.cbsnews.com/news/
almanac-yale-locks/.

[17] Deviant Ollam. 2008. Lockpicking and Physical Security. https:
//www.blackhat.com/presentations/bh-europe-08/Deviant_Ollam/Whitepaper/
bh-eu-08-deviant_ollam-WP.pdf.

[18] Deviant Ollam. 2012. Practical lock picking: a physical penetration tester’s training
guide. Elsevier.

[19] Klover Products. 2019. Sound Shark. https://kloverproducts.com/sound-shark/.
[20] Graham Pulford. 2007. High-security mechanical locks: an encyclopedic reference.

Butterworth-Heinemann.
[21] TechCrunch. 2018. LookOut SmartDoor Viewer. https://tcrn.ch/2PakE1C.
[22] M.W. Tobias. 2000. LOCKS, SAFES, AND SECURITY: An International Police

Reference Two Volumes. Vol. 1. Charles C Thomas Publisher.
[23] M.W. Tobias. 2007. Opening Locks in Ten Seconds or Less. https://conference.hitb.

org/hitbsecconf2007dubai/materials/D1%20-%20Marc%20Weber%20Tobias%
20-%20The%20Insecurity%20of%20Mechanical%20Locks.pdf.

[24] Karim H. Vellani. 2019. Strategic security management: a risk assessment guide
for decision makers. CRC Press.

[25] Barry Wels and Rop Gonggrijp. 2005. Bumping Locks. http://toool.nl/images/7/
75/Bumping.pdf.

http://ampflab.com
https://www.mattblaze.org/papers/notes/picking/
https://www.mattblaze.org/papers/notes/picking/
https://www.art-of-lockpicking.com/criminals-dont-pick-locks/
https://www.art-of-lockpicking.com/criminals-dont-pick-locks/
https://www.blackhat.com/presentations/bh-usa-09/DATAGRAM/BHUSA09-Datagram-LockpickForensics-PAPER.pdf
https://www.blackhat.com/presentations/bh-usa-09/DATAGRAM/BHUSA09-Datagram-LockpickForensics-PAPER.pdf
https://www.blackhat.com/presentations/bh-usa-09/DATAGRAM/BHUSA09-Datagram-LockpickForensics-PAPER.pdf
https://gizmodo.com/the-history-and-future-of-locks-and-keys-1735694812
https://gizmodo.com/the-history-and-future-of-locks-and-keys-1735694812
https://support.google.com/googlenest/answer/9250972?hl=en-CA
https://support.google.com/googlenest/answer/9250972?hl=en-CA
https://conference.hitb.org/hitbsecconf2017ams/sessions/most-impressive-a-guide-to-key-impressioning-attacks/
https://conference.hitb.org/hitbsecconf2017ams/sessions/most-impressive-a-guide-to-key-impressioning-attacks/
https://www.ibisworld.com/united-states/market-research-reports/door-lock-lockset-manufacturing-industry/
https://www.ibisworld.com/united-states/market-research-reports/door-lock-lockset-manufacturing-industry/
https://www.key.me
http://www.keys4classics.com/info/cut_notes.html
http://www.keys4classics.com/info/cut_notes.html
https://www.lsamichigan.org/Tech/SCHLAGE_KeySpecs.pdf
https://www.lsamichigan.org/Tech/SCHLAGE_KeySpecs.pdf
https://www.cbsnews.com/news/almanac-yale-locks/
https://www.cbsnews.com/news/almanac-yale-locks/
https://www.blackhat.com/presentations/bh-europe-08/Deviant_Ollam/Whitepaper/bh-eu-08-deviant_ollam-WP.pdf
https://www.blackhat.com/presentations/bh-europe-08/Deviant_Ollam/Whitepaper/bh-eu-08-deviant_ollam-WP.pdf
https://www.blackhat.com/presentations/bh-europe-08/Deviant_Ollam/Whitepaper/bh-eu-08-deviant_ollam-WP.pdf
https://kloverproducts.com/sound-shark/
https://tcrn.ch/2PakE1C
https://conference.hitb.org/hitbsecconf2007dubai/materials/D1%20-%20Marc%20Weber%20Tobias%20-%20The%20Insecurity%20of%20Mechanical%20Locks.pdf
https://conference.hitb.org/hitbsecconf2007dubai/materials/D1%20-%20Marc%20Weber%20Tobias%20-%20The%20Insecurity%20of%20Mechanical%20Locks.pdf
https://conference.hitb.org/hitbsecconf2007dubai/materials/D1%20-%20Marc%20Weber%20Tobias%20-%20The%20Insecurity%20of%20Mechanical%20Locks.pdf
http://toool.nl/images/7/75/Bumping.pdf
http://toool.nl/images/7/75/Bumping.pdf

	Abstract
	1 Introduction
	2 Lock and Key Construction
	3 SpiKey Design
	3.1 Click Detection
	3.2 Inter-Ridge Distance Computation
	3.3 Inter-Bitting Sequence Computation
	3.4 Key Search Space Reduction
	3.5 Handling Multiple-Pin Case
	3.6 Handling Missing Ridges

	4 Feasibility Study
	4.1 Simulation Setup and Implementation
	4.2 Preliminary Results

	5 Discussion
	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

